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ARTICLE INFO ABSTRACT

Article history: Disruptive coloration is a common camouflage strategy that breaks body outlines and
Received 1 September 2020 ostensibly blends organisms into complex backgrounds. However, contrasting false edges
Received in revised form 2 November 2020 caused by an animal's structure can also break body outlines, although there is no

Accepted 2 November 2020 empirical evidence to support this strategy. Here, we examined the Gabor edge disruption

ratio (GabRat) of two species, the keeled box turtle (Cuora mouhotii) and the Indochinese
box turtle (C. galbinifrons), on preferred (e.g., deciduous leaves) and non-preferred (i.e.,
grass) substrates. We quantified edge disruption in different substrates to compare
Vertebrates interspecific differences in the GabRat values of disruptive coloration among the turtles'
Keeled box turtle preferred and non-preferred (control) substrates. We found that both species exhibited
Indochinese box turtle higher GabRat values on preferred substrates, but interestingly, the keeled box turtle, with
a uniformly colored carapace containing flat scutes and two keels, had a higher GabRat
value than the Indochinese box turtle, characterized by two yellow stripes on its carapace.
Our results indicated that the strong brightness gradients caused by the directional illu-
mination of the flattened and keeled carapaces created disruptive coloration in the keeled
box turtles, whereas a high chroma contrast created disruptive coloration in the Indo-
chinese box turtles. For these turtles, the structural modifications resulted in variations in
lightness that led to higher levels of disruption than the chromatic disruption of the
Indochinese box turtle. Our study provides, to our knowledge, the first evidence of
disruptive camouflage in turtles and the first comprehensive test of structural and colored
disruption in vertebrates.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Disruptive coloration is an important camouflage strategy. High-contrast markings near edges break up the body's outline,
increasing the difficulty of detection or recognition (Thayer 1909; Stevens and Merilaita 2009; Webster et al., 2013; Sharman
etal., 2018). Empirical investigations on disruptive coloration include analyzing natural animal markings and demonstrating a
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survival advantage over background matching in artificial prey presented to wild avian predators (Cuthill et al., 2005;
Merilaita and Lind 2005).

Disruptive coloration can be achieved in multiple ways, such as the aforementioned highly effective edge disruption
(Cuthill et al., 2005; Schaefer and Stobbe 2006; Seymoure and Aiello 2015). Another strategy is surface disruption, in which
high-contrast patterns on the body are perceived as distinct objects and, therefore, not as part of a whole animal (Stevens
et al., 2009). This second form of disruptive coloration creates false edges on the animal that are more prominent than
real edges (Stevens et al., 2009; Troscianko et al., 2009). For example, high-contrast coloring patterns give artificial prey a
camouflage advantage against avian predators (Stevens et al., 2009; Seymoure and Aiello 2015). The third strategy is surface
disruption with edge enhancement, in which boundaries of light and dark patches are optically enhanced by tones becoming
lighter on the light side and darker on the dark side (Cott 1940; Osorio and Srinivasan 1991; Cuthill 2019). Experiments with
humans searching indicate that edge enhancement hampers both object recognition and detection (Egan et al., 2016;
Sharman et al., 2018; Adams et al., 2019).

However, our understanding of disruptive camouflage lack structural disruption, that is, a special physical structure that
creates strong internal monochromatic edges. Many animals with binocular vision can perceive depth information from
left—right disparities (Nityananda and Read 2017). Previous work suggests that binocular depth information can facilitate
detection, but only when the target depth is known in advance, because observers direct their attention to the relevant depth
plane (Nakayama and Silverman 1986; Finlayson et al., 2013). Depth difference may highlight part of the target's surface,
while other part match the background, this may make it difficult for an observer to visually segment the target's real edges
from its background (Adams et al., 2019).

The background also affects disruptive camouflage because disruptive coloration is contingent on background matching
(Cott 1940; Schaefer and Stobbe 2006; Xiao and Cuthill 2016). Specifically, a disruptive pattern's effectiveness is greatly
strengthened when some of its components closely match the background, while others differ strongly from it (Cott 1940). If
all the components contrast with the background, then the body outline can be easily detected, but if only part of the pattern
is indistinguishable from the background, then body-edge detection becomes much more difficult (Merilaita and Lind 2005;
Stevens and Cuthill 2006). However, organisms that use edge disruption are freed from background matching (Schaefer and
Stobbe 2006); species that employ this camouflage strategy can take advantage of more habitats because they are not
restricted to areas where they are the most cryptic (Ruxton et al., 2004; Sherratt et al., 2005). Disruptive coloration may, thus,
be linked to the evolution of generalist prey that exploit multiple regions and require patterns suitable as camouflage in
different environments (Endler 2006). Several studies have suggested that disruptive coloration is possibly more advanta-
geous than background matching for habitat generalists (Cuthill et al., 2005; Merilaita and Lind 2005; Endler 2006; Schaefer
and Stobbe 2006).

Turtle camouflage has not received widespread attention, with no research on disruptive camouflage, and only a few
studies on other camouflage strategies (see Nafus et al., 2015; Xiao et al., 2016). The sympatric keeled box turtle (Cuora
mouhotii) and the Indochinese box turtle (C. galbinifrons) have distinct coloration that reflects background matching and
disruptive coloration, respectively. The former exhibits uniform coloring and flat scutes (Fig. 1A; 2A), while the latter's body is
divided by two yellow stripes and curved scutes (Fig. 1B; 2B). Both species are active in forests, often partially burying their
bodies in leaf litter. Xiao et al. (2017) have suggested that the color of the part exposed to the substrates is similar to the color
of the leaves, thus, functioning to reduce predation risk. Considering that the illusory depth edges help conceal targets from
predators (Adams et al., 2019), we hypothesized that the flat scutes of keeled box turtles would result in two planes with
different depths between the top plane and the ground plane (see Fig. 1A), resulting in the top scutes being highlighted in the
substrates. Thus, predators would most likely detect the top scutes, which could interfere with the ability of predators to
visually segment the real edges of turtles from the background. Moreover, ridged keels run along the bridge where the top
scute and aide scute join. (see Fig. 2A), enhancing the appearance of false internal edges. Therefore, we predicted that the flat
top scutes of keeled box turtles would offer structural disruption, while the contrasting stripes of Indochinese box turtles

Fig. 1. Photographs of Cuora mouhotii on bare ground (A) and C. galbinifrons on broad-leaved substrate (B). The carapace lengths of C. mouhotii and C. galbinifrons
are 157.42 mm and 182.84 mm, respectively.
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Fig. 2. Illustration of two carapace (upper shell) cross-sections. A: The keeled box turtle (Cuora mouhotii) has flatter scutes (the frontal view of the carapace
resembles a trapezoid, forming two parallel planes above and below). The red arrows indicate the two keels at the edges of the top carapace. B: The Indochinese
box turtle (C. galbinifrons) has a domed carapace (the frontal view of the carapace is semicircular). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

would act as disruptive coloration. We also predicted that these turtles would exhibit a higher disruptive degree on their
preferred substrates.

2. Materials and methods
2.1. Animal and substrate selection

Field work was conducted at the Diaoluoshan Natural Reserve, a rainforest 860—914 m above sea level in Hainan Province,
People's Republic of China (18°43’53” N, 109°52/10” E) from September to December 2019. We used 12 adult Indochinese box
turtles (7 females and 5 males) and 12 adult keeled box turtles (8 females and 4 males) from the reserve. There is no obvious
sexual dimorphism in body color between male and female individuals. We selected three substrate types (broad leaves,
bamboo leaves, and bare ground) based on a previous long-term study of microhabitat selection in the two species, and used
the same telemetry sites (for detailed data, see Xiao et al., 2017). Grass was selected as the control, because neither species
preferred it (Xiao et al., 2017).

2.2. Photography

Turtles and substrates were photographed using a Canon EOS 550D camera with a Canon lens (EF-S24—70 mm f/2.8, 8.2
megapixels). The turtles were collected and photographed in the same substrate. Photography in the field took place between
11:00 a.m. and 2:00 p.m., when natural light allowed for good turtle visualization, and a black umbrella was used to counter
the direction of light entry to ensure uniform illumination. The camera was placed on a tripod and positioned almost
perpendicular to the substrates so that a constant image size could be maintained. Images were all saved in the uncompressed
RAW format (Stevens et al., 2007) for subsequent color measurements and analyses. An 18% standard gray card was placed at
the core of the images to avoid photographic bias (Mennon, China, 14.5 cm x 9.5 cm) and enable the normalization of esti-
mated chromaticity while controlling for illumination variation. We collected 80 substrate images (20 images in each sub-
strate) and 24 turtle images. Photographs were calibrated using the “Generate multispectral image” function in Image ]
(Troscianko et al., 2015). The images were aligned and linearized in terms of radiance and standardized to control for differing
light conditions using the 18% standard gray card (Stevens et al., 2007; Troscianko et al., 2015).

2.3. Coloration measurement and calculation

The coloration in the middle and side stripes (or scutes; Fig. 3) of the carapaces were quantified in Image] using CIEL*a*b*
(International Commission on Illumination) color spaces (Robertson 2007). Calibrated images were converted to L*a*b* stack,
and the L*, a*, and b* values of the middle and side stripes were measured respectively. The color components within
CIEL*a*b* color spaces were represented as three numbers, with L* indicating lightness, and a* and b* representing color
changes through the red-green and yellow-blue color axes, respectively. Since direct visual searching is an important method
for humans to catch turtles, and human eyesight has successfully been used to test the camouflage efficiency of turtles (Nafus
et al.,, 2015; Xiao et al., 2016), so we used human eyesight to evaluate if color differences are distinguishable. Between-stripe
chroma differences were calculated using Aa*b*; human eyes can identify chromaticity differences if Aa*b* is>6 units
(McCormick-Goodhart and Wilhelm 2003). In addition, we calculated the lightness difference (AL*) between the middle and
side stripes. The chroma differences (Aa*b*) and lightness difference (AL*) were calculated as follows:
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Fig. 3. Color or structure segmentation diagram. A; and A; are the middle and side scutes of Cuora mouhotii, respectively; B; and B, are the middle and side
stripes of C. galbinifrons, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Ad'b" = \/(a:‘n —a)® + (by, — by)
AL =|Ly, — L]
where “m” is the middle stripe on the carapace, and “s” is a side stripe on the carapace.
2.4. Disruption

We used the GabRat method, which uses angle sensitive filters to measure the ratio of false edges to coherent edges
around the target outline in Image ] (Troscianko et al., 2017; Price et al., 2019). This method takes into account the direction of
perceived edges versus actual body outlines, enabling it to distinguish between false edges and coherent edges (Troscianko
et al., 2017). Standardized photographs were exported as binary mask images in the TIFF format (white prey against a black
background). A Gabor filter was applied to each pixel around the carapace edge using a sigma level (filter size) of 5, which is
dependent on the px/mm of the carapace (Troscianko et al., 2017). Edge disruption per turtle was measured against a neutral
background using the same sigma level. For each substrate image, the subject turtle was placed in five random positions that
did not overlap with each other, allowing for the calculation of a general mean from five GabRats. This procedure was
repeated on all 80 substrate images, resulting in 9600 edge-disruption measurements. GabRat values range from 0 to 1, with
<0.2 being low edge disruption and >0.4 being high edge disruption (Troscianko et al., 2017; Price et al., 2019). GabRat
calculations were performed by a third party unaware of study's intention.

2.5. Statistical analysis

All statistical procedures were performed in SPSS 18.0 (SPSS, Inc., Chicago, IL), and all data were expressed as means + SE. A
Kolmogorov—Smirnov test was used to test the normality of GabRat and lightness difference data before analysis. We
compared interspecific GabRat differences in four kinds of substrates, and interspecific lightness difference using
independent-sample t tests. Between-substrate GabRat differences between preferred and non-preferred substrates within
each species were analyzed using Mann—Whitney U tests. The significance level was set at P<0.05, and the Bonferroni
method was used to correct the significance level when multiple comparisons were made.

3. Results
3.1. Color differences between middle and side stripes

The carapaces of keeled box turtles have uniform coloration because the chroma difference between the middle and side
stripes was below the distinguishable threshold (Aa*b* <6, Table 1). However, the middle and side stripes differed

?cl)ll)(:‘r3 ;ifferences between the middle and side strips of two Cuora spp. carapaces. Aa*b*: chroma difference.
Name Sample size Aa*b* AL*
Mean + SE t-test
C. galbinifrons 12 6.34+0.54 3.36+0.52 P<0.001
C. mouhotii 12 512+0.34 10.26 +0.86
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significantly in the carapaces of Indochinese box turtles (Aa*b* > 6, Table 1). The lightness difference (AL*) between middle
stripe and side stripe of keeled box turtles were significantly greater than Indochinese box turtles (t=—6.873, df =22,
P <0.001; Table 1).

3.2. Disruption

Disruption was effective in all substrates (GabRat > 0.2, Fig. 4). Keeled box turtles had GabRat values (broad-leaved,
0.404 +0.004; grass, 0.334 +0.004; bare ground, 0.388 +0.004; bamboo-leaved, 0.377 +0.003) that were higher than
Indochinese box turtles in all substrates (broad-leaved,0.392 +0.002, t=2.757, P=0.006; grass, 0.320 +0.003, t=2.749,
P =0.006; bare ground, 0.359 + 0.003, t = 5.540, P < 0.001; bamboo-leaved, 0.369 + 0.003, t = 1.857, P = 0.064). Broad-leaved
substrates provided the best disruption for both species, with disruption for keeled box turtles being particularly high
(GabRat > 0.4). The GabRat values of each species significantly differed among the four kinds of substrates (P < 0.001, lower
than Bonferroni method adjusted the significance level of 0.0083). Indochinese box turtles had significantly higher edge
disruption in broad leaves and bamboo leaves (preferred substrates, 0.381 + 0.002) than on bare ground and grass (non-
preferred substrates, 0.340 + 0.002, Z= —12.115, P < 0.001). Keeled box turtles had higher edge disruption in broad leaves and
on bare ground (preferred substrates, 0.396 +0.003) than in bamboo leaves and grass (non-preferred substrates,
0.356 +0.003, Z= —9.904, P <0.001).

4. Discussion

We found that keeled box turtles have uniform coloration on their carapaces, while the side and middle stripes of
Indochinese box turtles have a chroma difference, that can be distinguished. Furthermore, keeled box turtles have a signif-
icant greater than Indochinese box turtles in lightness difference (AL*) between the middle and side stripe of the carapace.
This difference highlighted the middle stripes of keeled box turtles and resulted in a false edge that generate structural
disruption, while chroma difference of Indochinese box turtles may generate colored disruption.

The results showed that the GabRat values of keeled box turtles were significantly higher than those of Indochinese box
turtles in four kinds of substrates, indicating that the former species exerted a stronger disruptive effect. The carapaces of
keeled box turtles feature two prominent ridges on their otherwise flat scutes with directional illumination, which results in
light and dark areas on either side of the ridges, creating a strong contrast along the ridge. Additionally, the flat scutes result in
two planes of different depths between the top and ground planes (see Fig. 1A), resulting in the top carapace forming internal
edges (see Fig. 3A1). These edges were the “real” depth edges caused by the structural depth of the turtles and are completely
different from the illusory depth edges caused by the coloration pattern of snakes (Adams et al., 2019). This is consistent with
the structural disruption leading to a camouflage advantage against predators. This could be considered a structural analog of
edge-enhanced disruption, which interferes with object detection and recognition (Egan et al., 2016; Sharman et al., 2018;
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Fig. 4. GabRat values of two Cuora spp. on each substrate. C. mouhotii had higher values than C. galbinifrons on each substrate (independent-sample t-test).
Different lowercase letters above the bars represent significant differences, while the same letters represent no significant difference (comparison of each species
in different substrates or interspecies in the same substrate).
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Adams et al., 2019). An alternative explanation of the high GabRat is that the trapezoidal shape of keeled box turtle (see
Fig. 2A) results in an enhanced depth cue between the middle stripe and background, and the side scutes form an oblique
plane travelling upward from a horizontal ground plane. The highlight of the middle stripe interferes with a predator’s ability
to segment the actual boundary of a turtle from its background. It is speculated that such shapes may result in binocular visual
predator more likely to detect internal edge, but not real edges (Finlayson et al., 2013; Cammack and Harris 2015; Adams et al.,
2019).

In contrast, the Indochinese box turtles had lower GabRat values, which may indicate that they are easier to be detected.
Compared to keeled box turtles, they have an arched carapace. Although chroma differences cause disruptive coloration, a
continuous smooth structure results in little difference in depth, and smaller differences in lightness may reduce the color
differences between middle and side stripes (Nakayama and Silverman 1986). Thus, predators can overcome the effects of
disruptive coloration (Nityananda and Read 2017; Adams et al., 2019). Several studies have supported the idea that lowering
contrast reduces the effectiveness of disruptive camouflage (Cuthill et al., 2005; Merilaita and Lind 2005; Stevens et al., 2009).
Moreover, this result corroborates the findings of previous studies showing that humans can better distinguish striped in-
dividuals (Stevens et al., 2011; Troscianko et al. 2013, 2018).

In addition, both species had some disruptive effects across the four kinds of substrates, indicating that the camouflage
mechanism is likely inherent to turtles themselves. This is consistent with the fact that the disruptive effect is intrinsic to
shore crabs (Carcinus maenas) (Price et al., 2019). These findings support the idea that disruptive coloration allows animals to
use a wider range of substrates and is possibly advantageous for habitat generalists (Cuthill et al., 2005; Endler 2006; Schaefer
and Stobbe 2006; Price et al., 2019). Moreover, as mentioned above, keeled box turtles exhibit greater disruption than
Indochinese box turtles. This may correlate with the use of substrates. Keeled box turtles have a significantly larger home
range and move more frequently than Indochinese box turtles (Wang 2010), increasing encounters with distinct substrates.
Other studies have reported a positive correlation between disruptive coloration and survival in a range of heterogeneous
substrates (Cuthill et al., 2005; Schaefer and Stobbe 2006; Tan et al., 2020). However, the keeled box turtles’ flatter carapace is
less resistant than that of Indochinese box turtles to mechanical pressure and more vulnerable to predator bites (unpublished
data). Therefore, better disruptiveness is crucial to the survival of keeled box turtles (Ruxton et al., 2004; Sherratt et al., 2005;
Ramirezdelgado and Castillo 2020). The potential threat of predation could exert a strong selective pressure for structural
camouflage.

Additionally, the keeled box turtles were distributed more densely than the Indochinese box turtles in Diaoluoshan
Natural Reserve (Wang et al., 2011; Lian 2009), suggesting that their higher disruptive effect may provide a survival
advantage. Moreover, both species are known to be active and half-cover themselves in leaf litter (Xiao et al., 2017). This may
reduce detectability through employing multiple camouflage strategies, such as background matching and masquerading
(Hultgren and Stachowicz 2008; Mayani-Paras et al., 2015; Holveck et al., 2017; Hughes et al., 2019). However, we cannot
exclude the influence of other factors on population density. For example, keeled box turtles can protect themselves from
predators by hiding in rock crevices (Xiao et al., 2017).

The results from examining Indochinese box turtles verified our hypothesis that the false edge caused by yellow stripes
acts as camouflage for this species. Their disruptive effect in broad-leaved and bamboo-leaved substrates was significantly
better than on bare ground and in grass. Broad-leaved and bamboo-leaved substrates, which appear to more closely match
the background color of Indochinese box turtles, are more complex than bare ground or grass, and background complexity
reduces detectability (Dimitrova and Merilaita 2014; Xiao and Cuthill 2016).

The disruptive effect of keeled box turtles was significantly better on broad leaves and bare ground than on bamboo leaves
and grass, possibly because it does not match the latter two substrates but does seem to match the former two. These findings
confirm that disruptive coloration is contingent on background matching (Cott 1940; Schaefer and Stobbe 2006; Adams et al.,
2019). The keeled box turtles were often found on bare ground and in rock crevices beneath the high forest during our long-
term ecological field study (Wang, 2010; Xiao et al., 2017), and their flat scutes heightened the disruptive effect on bare
ground and broad-leaved areas around those crevices. Similarly, the dorsal coat color of the plains pocket gopher (Geomys
bursarius) highly matches to their background surrounding, which is their burrow (Krupa and Geluso 2000). While this
hypothesis is compelling, we would require further analyses to verify whether the carapace color of keeled box turtles
actually matches the bare ground.

Relevant research on disruptive camouflage in vertebrates is rare. In amphibians, the dorsal patterns of leaf litter toads
(Rhinella alata) provide disruptive coloration (Mcelroy 2016), and Australian frogs (Limnodynastes tasmaniensis) exhibit
disruptive camouflage over a wide range of spatial scales (Osorio and Srinivasan 1991). A comparison of tadpoles with
different colors and patterns showed that disruptively colored tadpoles gained an anti-predation advantage over uniformly
colored tadpoles (Eterovick et al., 2018; Gontijo et al., 2018). Among reptiles, edge-enhancement patterns in snakes enhances
the effect of disruptive camouflage (Egan et al., 2016; Adams et al., 2019). For example, water snake (Natrix sipedon sipedon)
coloration changes from disruptive to uniform between the juvenile and adult stages (Beatson 1976). In birds, Japanese quails
tended to choose dark substrates that disrupted egg outlines as nesting material (Lovell et al., 2013). Similarly, another study
using avian cup-nests found that contrasting materials provided disruptive camouflage (Mulder et al., 2020). In mammals, the
dark leg markings of even-toed ungulates serve as disruptive coloration (Stoner et al., 2003). Despite there being few studies,
it seems that structural disruptive camouflage is rare, with most other vertebrates using disruptive coloration instead.

Overall, we are the first to demonstrate disruptive camouflage in turtles. We are also the first to test for structural
disruption in vertebrates, and we demonstrated that it is even more disruptive than disruptive coloration in their preferred
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substrates. Whether such structures contribute significant advantages to a species’ survival requires testing with actual
predators. This study opens a new direction in vertebrate camouflage research that focuses on the influence of body shape
and color on visual disruption. Furthermore, because many turtle species (e.g., Notochelys platynota, Staurotypus triporcatus,
and Staurotypus salvinii) generate misleading internal edges through carapace structure, we recommend empirically verifying
structural disruption as a camouflage strategy in turtles.
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